Aquatic Biosystems
نویسندگان
چکیده
Background: Hematodinium perezi, a parasitic dinoflagellate, infects and kills blue crabs, Callinectes sapidus, along the Atlantic and Gulf coasts of the United States. The parasite proliferates within host hemolymph and tissues, and also produces free-swimming biflagellated dinospores that emerge from infected crabs. Infections in C. sapidus recur annually, and it is not known if biotic or environmental reservoirs contribute to reinfection and outbreaks. To address this data gap, a quantitative PCR assay based on the internal transcribed spacer 2 (ITS2) region of H. perezi rRNA genes was developed to asses the temporal and spatial incidence of the parasite in Delaware and Maryland coastal bays. Results: A previously-used PCR assay for H. perezi, based on the small subunit rRNA gene sequence, was found to lack adequate species specificity to discriminate non-Hematodinium sp. dinoflagellate species in environmental samples. A new ITS2-targeted assay was developed and validated to detect H. perezi DNA in sediment and water samples using E. coli carrying the H. perezi rDNA genes. Application of the method to environmental samples identified potential hotspots in sediment in Indian River Inlet, DE and Chincoteague Bay, MD and VA. H. perezi DNA was not detected in co-occurring shrimp or snails, even during an outbreak of the parasite in C. sapidus. Conclusions: H. perezi is present in water and sediment samples in Maryland and Delaware coastal bays from April through November with a wide spatial and temporal variability in incidence. Sampling sites with high levels of H. perezi DNA in both bays share characteristics of silty, organic sediments and low tidal currents. The environmental detection of H. perezi in spring, ahead of peak prevalence in crabs, points to gaps in our understanding of the parasite’s life history prior to infection in crabs as well as the mode of environmental transmission. To better understand the H. perezi life cycle will require further monitoring of the parasite in habitats as well as hosts. Improved understanding of potential environmental transmission to crabs will facilitate the development of disease forecasting.
منابع مشابه
Aquatic Biosystems reviewer acknowledgement 2013
CONTRIBUTING REVIEWERS The Aquatic Biosystems editorial team would like to thank the following colleagues who contributed to peer review for the journal in 2013.
متن کاملAquatic biosystems: reactions and actions
Aquatic biological systems are a critical part of the structure and function of earth's biosphere. While attention of the scientific community is often focused on the reaction of biological systems to changes in the environment, these systems also have profound effects, or actions, on the environment. Throughout the evolutionary history of earth, the rise and/or fall of different aquatic biosys...
متن کاملDefense Mechanisms in Hydrobiosystems
This mini-review summarizes our experimental data devoted to constitutive and inducible mechanisms of defense in biosystems of various levels of organization. Autoand heterotrophic components of the transformed hydroecosystems are taken into consideration. The role of higher aquatic plants in the defense mechanisms is considered.
متن کاملEvaluation of Environmental Impacts in Turkey Production System in Iran
Poultry industry is an important production system due to providing remarkable portion of the human food and protein needs. Considering the necessity of environmental protection, the amount of environmental impacts of a turkey production unit in Iran was determined using life cycle assessment method. The required information were collected through questionnaires and interviews with farm owners....
متن کاملFish 'n' chips: the use of microarrays for aquatic toxicology.
Gene expression analysis is changing the way that we look at toxicity, allowing toxicologists to perform parallel analyses of entire transcriptomes. While this technology is not as advanced in aquatic toxicology as it is for mammalian models, it has shown promise for determining modes of action, identifying biomarkers and developing "signatures" of chemicals that can be used for field and mixtu...
متن کاملLamination as a tool for distinguishing microbial and metazoan biosystems from inert structures
Vladimir Ivanovich Vernadsky (1863-1945), who is regarded as one of the founders of modern biogeochemistry, has stated in “Scientific Thought as a Planetary Phenomenon” (1991:120) that “the biosphere appears in biogeochemistry as a peculiar envelope of the Earth clearly distinct from the other envelopes of our planet”. One of the distinctive features of living matter is the tendency to occur in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013